USA CAS⁹, Ohio 2015 – Kilts and CAS in Statistics

Nevil Hopley

T³ National Trainer, Scotland & UK. Head of Mathematics Department

www.calculatorsoftware.co.uk/nspire

My Home

My CAS Timeline

CAS Talks at TI International Conferences

- 2011 My first 18 months of CAS usage
- 2012 Trigonometry and Rearranging Equations
- 2013 Linear Equations and Units
- 2014 Extending CAS with functions and programs

2015 CAS in Statistics (v1) at T³ Europe, Madrid

Credits

Chris Harrow, Ohio, USA John Hanna, Honolulu, USA Pat Mara, Pueblo, USA

www.statlect.com/distri.htm

answers.yahoo.com/question/index?qid=20120403201 108AAlaU1o

math.stackexchange.com/questions/117926/findingmode-in-binomial-distribution

Chris Harrow

casmusings.wordpress.com

John Hanna

"LinReg Exposed!"

A talk from 2014 TI International Conference

Pat Mara

Linear Regression CAS.tns (Nspire Google Group, 19 Nov 2014)

Linear Regression CAS - Pat Mara.tns

Today

Formulae for Standard Deviation

Discrete Uniform Distribution

Geometric Distribution

Laws of Expectation and Variance

Binomial Distribution

Poisson Distribution

Probability Generating Functions

www.calculatorsoftware.co.uk/nspire

Formulae for Standard Deviation

Kilts and CAS in Statistics.tns pages 1.1 & 1.2

Discrete Uniform Distribution ~ U[1,n]

$$E(X) = \frac{\frac{1}{2}n(n+1)}{n}$$

= $\frac{1}{2}(n+1)$
$$Var(X) = \frac{\frac{1}{12}n(n-1)(n+1)}{n}$$

= $\frac{1}{12}(n^2 - 1)$

pages 2.1 & 2.2

Discrete Uniform Distribution ~ U[a,b]

$$X \sim U[a,b]$$

$$E(X) = \frac{1}{2}(a+b)$$

$$Var(X) = \frac{1}{12}[(b-a+1)^2 - 1]$$

pages 2.3 & 2.4

Geometric Sequences & Series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a\left(1-r^n\right)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$

2.3
 2.4
 3.1
 CAS in Statis... d15
 Image: CAS in Statis... d15

 © Geometric Sequence and Series

$$u(n):=a \cdot r^{n-1}$$
 Done

 $u(n):=a \cdot r^{n-1}$
 Done

 $s(n):=\sum_{i=1}^{n} (u(i))$
 Image: Done

 $s(n)$
 Image: Done

pages 3.1 & 3.2 & 3.3

Geometric Distribution

X= number of trials until the first success P(success on each trial) = p

$$P(X = x) = q^{x-1}p$$
$$P(X \le x) = 1 - q^x$$

$$E(X) = \frac{1}{p}$$

$$Var(X) = \frac{q}{p}$$

pages 4.1 & 4.2 & 4.3

BONUS!

	۳V	Scratchpad 🗢	(1)	
3 <x>5</x>			x>5	
2 <x<6< td=""><th></th><th></th><td>2<x<6< td=""><td>I</td></x<6<></td></x<6<>			2 <x<6< td=""><td>I</td></x<6<>	I
expan	1(2 <x<6< th=""><th>5)</th><td></td><td>I</td></x<6<>	5)		I
				I
				I
			[J

Scratchpad

Laws of Expectation and Variance

E(aX+b) = aE(X) + b

 $Var(aX+b) = a^2 Var(X)$

 4.2 4.3 5.1 CAS in Statis...d15 ↓
 © Laws of Expectation and Variance
 x:=seq(expr("x"&string(n)),n,1,9) {x1,x2,x3,x4,x5,x6,x7,x8,x9}
 p:=seq(expr("p"&string(n)),n,1,9) {p1,p2,p3,p4,p5,p6,p7,p8,p9}
 sum(p) p1+p2+p3+p4+p5+p6+p7+p8+p9
 p9:=1-(p1+p2+p3+p4+p5+p6+p7+p8)

pages 5.1 & 5.2

Bernoulli Distribution

X= number of successes in 1 trial P(success on each trial) = p

🕨 Kilts and CA...15 🗢

6.2

RAD 【

Done

$$P(X = x) = \begin{cases} 1 - p & \text{if } x = 0 \\ p & \text{if } x = 1 \end{cases}$$

$$\mathbb{O}\text{Bernoulli Distribution}$$

$$bernpdf(p,x) = \begin{cases} 1 - p, x = 0 \\ p, x = 1 \end{cases}$$

$$bernpdf(p,x) = \begin{cases} 1 - p, x = 0 \\ p, x = 1 \end{cases}$$

$$bernpdf(p,x)$$

pages 6.1 & 6.2 & 6.3

Binomial Distribution

X= number of successes in n trial P(success on each trial) = p

$$P(X=x) = {^{n}C_{r}p^{x}(1-p)^{x}}$$

E(X) = np

Var(X) = npq

G.2 6.3 7.1 ► Kilts and CA...15 ⊂ RAD (I) ×

 © Binomial Distribution

 binomPdf(n,p,x)

 binomPdf(n,p,x):=nCr(n,x) · p^X · $(1-p)^{n-x}$

 Done

 binpdf(n,p,x).

 Lone

 inomPdf(n,p,x)

 inomPdf(n,p,x

 inomPdf(n,p,x)

 inomPdf(n,p,x

 inomPdf(

pages 7.1 & 7.2 & 7.3

Mode of Binomial Distribution

pages 8.1 & 9.1

Poisson Distribution

X = number of events in a fixed interval mean rate of events = λ

$$P(X = x) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$

$$E(X) = \lambda$$

$$Var(X) = \lambda$$

$$Var(X) = \lambda$$

$$Rate CA... IS Construction
$$Poisson Distribution$$

$$Poipdf(h,x) = \frac{e^{-h} \cdot h^{x}}{x!}$$

$$Poipdf(h,x) = \frac{e^{-h} \cdot h^{x}}{x!}$$$$

pages 10.1 & 10.2 & 10.3

Mode of Poisson Distribution

pages 11.1 & 12.1

Probability Generating Functions

$$G_X(t) = P(X=0)t^0 + P(X=1)t^1 + P(X=2)t^2 + \dots$$
$$G_X(t) = \sum_{x=0}^n P(X=x)t^x$$

A polynomial in t whose coefficients are the probabilities of the powers

pages 13.1 to 17.2

E(X) and Var(X) for both B(n,p) and Poi(λ) Unbiased & Consistent Estimators Chi-Squared Distributions

Want Copies of Everything?

www.calculatorsoftware.co.uk/nspire

Thank you for coming to my talk.

Nevil Hopley

T³ National Trainer, Scotland & UK. Head of Mathematics Department CAS user on Handhelds and TI-Nspire iPad App TI-Basic and Lua Programmer Mountain Unicycler